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Figure 1. Our method addresses the problem of rendering geometrically consistent novel trajectories from a monocular source video. We
propose to utilize the geometric knowledge of a pre-trained large reconstruction model (LRM) by conditioning the trajectory generation
process on the latent state of a 4D LRM. Compared to prior methods which are conditioned on error-prone point cloud re-renderings of the
source video, our method achieves state-of-the-art visual quality while maintaining a high level of geometric fidelity to the original scene.

Abstract

Given a monocular video, the goal of video re-rendering is to
generate views of the scene from a novel camera trajectory.
Existing methods face two distinct challenges. Geometri-
cally unconditioned models lack spatial awareness, leading
to drift and deformation under viewpoint changes. On the
other hand, geometrically-conditioned models depend on
estimated depth and explicit reconstruction, making them
susceptible to depth inaccuracies and calibration errors. We
propose to address these challenges by using the implicit geo-

metric knowledge embedded in the latent space of a large 4D
reconstruction model to condition the video generation pro-
cess. These latents capture scene structure in a continuous
space without explicit reconstruction. Therefore, they pro-
vide a flexible representation that allows the pretrained dif-
fusion prior to regularize errors more effectively. By jointly
conditioning on these latents and source camera poses, we
demonstrate that our model achieves state-of-the-art results
on the video re-rendering task.

https://lavr-4d-scene-rerender.github.io/


1. Introduction
Video re-rendering, or novel trajectory synthesis, aims to
visualize a dynamic scene from new and unseen camera
paths. Unlike standard video generation, this task requires
modeling both scene dynamics and underlying geometry to
maintain temporal and spatial coherence under arbitrary cam-
era motion. Controllable trajectory synthesis enables various
applications including re-rendering captured scenes for film,
and generating immersive experience from a single video.
However, the problem is inherently challenging. Monocular
inputs provide weak geometric supervision, forcing models
to jointly infer structure, motion, and lighting.

Existing works approach this problem from two direc-
tions. Geometrically-conditioned methods [9, 24, 40] model
scene geometry using point clouds or meshes and re-render
novel views. Although physically grounded, these meth-
ods [24, 40] rely on accurate depth estimation, so any errors
propagate into the re-rendered point clouds and cause shape
distortions in novel views, where objects appear stretched or
compressed along the depth direction and parallax becomes
inconsistent. To address this issue, geometrically uncondi-
tioned methods [4] have been recently proposed to avoid
explicit conditioning, and instead generate videos using only
the input video and target trajectory. Such methods achieve
strong visual realism–largely inherited from the pretrained
video diffusion prior—-but struggle with geometric consis-
tency across viewpoints. This motivates a new approach that
can capture the strengths of both directions by providing
geometric guidance without depending on precise depth.

We propose a model for novel trajectory synthesis that
conditions a video diffusion backbone on a latent 4D scene
representation extracted from monocular videos. Instead of
explicit 4D conditioning, we encode input videos into a latent
space that captures appearance, geometry, and dynamics,
enabling the model to follow novel camera trajectories while
maintaining coherent structure and parallax.

This formulation is enabled by recent large 4D reconstruc-
tion models [15, 30, 32] (LRMs), which have shown that a
feed-forward network can extract rich latent representations
from monocular frames and decode them into depth, pose,
or approximate novel views. These models demonstrate that
implicit geometry structure can be captured without explicit
optimization or volumetric reconstruction, providing exactly
the type of geometry-aware cues our framework leverages.

While both point clouds and LRM-produced latents can
provide geometric cues, they condition the generative pro-
cess in fundamentally different ways. Point-cloud pipelines
reconstruct geometry from estimated depth and re-render it
from the target viewpoint, so any depth error directly man-
ifests as distorted shapes, incorrect parallax, or missing re-
gions—acting as a rigid geometric constraint that leaves the
generative model little flexibility to correct mistakes. In con-
trast, implicit geometry latents provide structural guidance
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Figure 2. Architecture comparison. (a) Unconditioned methods
for novel trajectory generation achieve high visual quality but lack
geometric awareness, leading to inconsistencies. (b) Conditioning
on 4D point cloud renders provides consistency, but reduces qual-
ity as the depth estimation and point cloud generation stages are
sensitive to errors. (c) Our proposed architecture utilizes the im-
plicit geometric knowledge of a pre-trained large 4D reconstruction
model (LRM) to achieve both high quality and consistency.

in a softer, non–pixel-aligned form. Because the diffusion
model is pretrained on large-scale video data with strong
priors over plausible motion and scene structure, it can regu-
larize small geometric inconsistencies in these latents. This
combination yields geometric cues that are both informative
and robust to depth noise, motivating our design choice.

As a result, our latent space conditioning formulation
provides strong geometric priors without relying on accu-
rate depth estimation. It enables the model to maintain sta-
ble parallax and coherent structure under large viewpoint
changes, producing geometrically consistent videos along
arbitrary camera trajectories. Fig. 1 illustrates the qualitative
advantages of our approach compared with a state-of-the-art
explicitly 4D-conditioned method [40], and Fig. 2 compares
our overall paradigm with existing baselines. In summary,
our novel contributions are:

• We propose to use the latent state of a large reconstruction
models to provide geometric conditioning without relying
on explicit depth or point-cloud reconstruction.

• We present a lightweight adapter module that compresses
and integrates the latents from a state-of-the-art 4D re-
construction model with VAE-encoded video latents for
efficient consumption by a pre-trained diffusion backbone.

• We conduct extensive evaluation to show that our approach
outperforms both geometrically-conditioned and uncondi-
tioned baselines on quantitative and qualitative metrics.

2. Related Work

Unsupervised 3D/4D Scene Reconstruction. Neural scene
representations such as NeRF [5, 6, 19] and 3D Gaussian
Splatting [14] have advanced novel view synthesis by recon-
structing scene geometry from posed images. While effective
for static scenes with sufficient multi-view coverage, their
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Figure 3. Pipeline overview. Given a monocular source video, our method generates a novel video of the same scene at a target camera
trajectory using a video diffusion model. To ensure geometric consistency, we condition the model on latents from CUT3R [32], a pre-trained
4D reconstruction model. We use four signals from the source video: the standard video VAE latents, CUT3R’s 4D latents, source camera
poses, and an encoded text description of the scene. A novel adapter architecture aligns the CUT3R and VAE latents, and allows these to be
fed to the model in a computationally feasible manner. The source camera poses come from CUT3R, and are added to the DiT’s intermediate
activations after passing through a small MLP-based adapter. Another MLP processes the target poses at which the novel video is rendered.
Note that only the projection and self-attention layers of the DiT are trainable, other parameters are frozen.

reliance on accurate and complete geometry makes them
difficult to apply when only monocular video frames are
available. Subsequent work has extended these approaches
to dynamic scenes [8, 21–23, 25, 31, 35]. Early monocular
methods rely on depth-based warping [38] with later im-
provements in occlusion handling, while newer techniques
adopt neural dynamic representations [21–23, 25] or Gaus-
sian Splatting variants [8, 31, 35] with additional regulariza-
tion to stabilize time-varying geometry. Nonetheless, these
pipelines still often degrade when the target camera trajec-
tory departs significantly from the observed views.

Large 3D/4D Reconstruction Models. Large 3D and 4D
reconstruction models [29, 30, 32, 33, 42] leverage high-
capacity architectures and large-scale pretraining to esti-
mate scene structure from single images, image pairs, or
short video clips. Early feed-forward approaches such as
DUST3R [33] demonstrate that transformer-based corre-
spondence aggregation alone can recover camera poses and
dense geometry without iterative optimization. Building
on this idea, more recent systems such as SPANN3R [29],

CUT3R [32], MONST3R [42], and MegaSAM [15] scale
model capacity and training data to achieve more generaliz-
able reconstructions, and capture time-varying or 4D scene
structure. These large reconstruction models provide strong
geometric priors that can serve as effective conditioning sig-
nals for generative and camera-controlled video synthesis.

Generative Novel View/Trajectory Synthesis. Recent
works in this direction have explored using generative mod-
els to achieve controllable camera trajectories for video syn-
thesis [1–3, 10, 11, 11, 12, 18, 20, 24, 26, 28, 34, 37, 39, 41].
These methods typically condition video diffusion models
on camera poses or trajectory signals to guide viewpoint
changes. In the dynamic setting, TrajectoryCrafter [40],
Gen3C [24], and EX-4D [12] generate new views by condi-
tioning on rendered point clouds or meshes, offering strong
consistency but inheriting depth-related brittleness. By con-
trast, ReCamMaster [4] directly synthesizes videos along
new trajectories without explicit 4D structure, providing
greater flexibility at the cost of weaker geometric stability.

Explicit 4D pipelines therefore excel at enforcing geome-



try but are vulnerable to reconstruction errors, whereas non-
4D-conditioned methods remain more robust but struggle to
maintain spatial coherence under large camera motion.

3. Method
Given a source video, our goal is to synthesize novel frames
along a user-specified camera trajectory while preserving the
scene content and dynamics of the source. To achieve this,
we propose conditioning a video-to-video diffusion model
on the latent state of a large 4D reconstruction model (LRM).

Our proposed approach exploits the fact that the latent
state aggregates scene structure and camera motion with-
out explicit geometric reconstruction. Thus, it circumvents
the error-prone approach of depth estimation and point-
cloud/mesh reconstruction adopted by existing models with
geometric conditioning [24, 36, 40]. In addition, these prior
works utilize geometry only indirectly through renderings.
These renderings – which suffer from distortions and holes –
bake the reconstructed scene into a 2D image, and leave the
generative model limited room to reason about the underly-
ing geometry and correct errors. In contrast, the latent space
of an LRM encodes geometry and camera poses in a high-
dimensional feature space. Not only does this preserve the
entire 4D scene structure, the continuous representation al-
lows more flexibility for the pre-trained video diffusion prior
to regularize inconsistencies during the generation stage.

In addition to the latent state, we use the source camera
poses and a text prompt as secondary conditions to provide
additional context for the input frames. The user-specified
target poses are supplied as a control signal to steer the
denoising process toward the desired camera path.

3.1. Scene State Latents with CUT3R
We use CUT3R [32] as a representative 4D LRM for our
task. CUT3R provides consistent feed-forward reconstruc-
tion from a monocular video by maintaining a persistent
latent state that aggregates multi-view information over time
and reflects the evolving 3D understanding of the scene. Mul-
tiple heads decode the state to recover the pose, world-space
pointmaps, and depth for each frame of the input video,
thereby demonstrating that the latent state contains strong
geometry and motion cues for downstream conditioning.

The latent state is represented as a set of s tokens {ℓi ∈
Rd}si=1 which are updated at each time step by the ViT-
encoded frame of the source video (Figure 3). We use the
state tokens S = {{ℓit ∈ Rd}si=1, t = 1, 2, ..., T} for all T
frames of the video in order to preserve temporal changes in
both scene content and camera pose.

3.2. Adapting CUT3R Latents to DiT Backbone
While the CUT3R state latents S provide rich geometric cues,
they are not directly compatible with the inputs of the diffu-
sion backbone. State-of-the-art video diffusion models learn
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Figure 4. Proposed CUT3R Adapter. Our lightweight adapter
compresses CUT3R’s per-frame latent tokens into geometry-aware
features that align with the representation used by the diffusion
model. The shape of features at each stage is shown in brackets.

to denoise a VAE-encoded latent representation of the source
frames, which then passes through a decoder to produce the
RGB output. Thus, we introduce a lightweight adapter to
compress CUT3R’s latent tokens into geometry-aware fea-
tures aligned with the latent representation expected by the
denoising diffusion transformer (DiT).

Preserving the backbone’s learned temporal inductive
biases requires that the CUT3R and VAE latents be aligned
along the frame dimension. This is because the DiT is trained
to process frame-indexed tokens via temporal self-attention,
and maintaining the structure of each token is important to
ensure the injected geometry cues do not disrupt pre-trained
behavior. Channel-wise concatenation would alter the shape
of each temporal token, and require substantial retraining.



However, directly concatenating and feeding all CUT3R
tokens into the diffusion model is computationally infeasible,
as self-attention scales quadratically with sequence length.
We found that using the full CUT3R latent sequence, a single
training iteration could take two minutes on 8×H200 GPUs!

Therefore, our proposed CUT3R adapter performs tem-
poral and token-level compression before injecting geometry
into the diffusion backbone (Figure 4). More specifically,
starting with a tensor of shape (T, 1, s, d) representing the
CUT3R state latent S, we sub-sample every k-th frame to
reduce the sequence length to T

k . The sub-sampled tokens
are then passed through a two-layer transformer decoder
with 12 heads per layer, which fuses information within each
frame yielding a tensor sized (Tk , c, h, w) where (h,w) is
the size of the video VAE latent in the spatial dimension. We
temporally aggregate these features by merging every m con-
secutive frames into a single feature map. We choose m and
c such that m · c equals the channel size of the video VAE la-
tent. Thus, we obtain T

mk CUT3R latent groups. Each group
of shape (m·c, h, w) summarizes the geometric information
within a local temporal window.

We concatenate these groups with the VAE-encoded
source video latents and the noisy latents along the frame
dimension, preserving the temporal token layout expected
by the pretrained DiT and avoiding any modification to the
backbone architecture.

3.3. Training Strategy
We train the CUT3R and pose adapters from scratch, and
finetune a subset of DiT layers. These latter include the DiT
projector, and all self-attention blocks. The remaining lay-
ers of the DiT, and the Video VAE are frozen to preserve
pretrained priors. We train the model on the synthetic Multi-
CamVideo dataset from ReCamMaster [4] which provides
multiple posed trajectories for dynamic scenes. We randomly
select two trajectories per scene as source and target.

We use a standard conditional flow-matching loss [17]
as the training objective. Specifically, given the clean tar-
get latent z0, a noise sample ϵ ∼ N (0, I), and a diffu-
sion timestep t ∼ U(0, 1), we set the interpolated latent
zt = (1 − t)z0 + tϵ. The DiT predicts the velocity field
conditioned on the adapted CUT3R state latents Zc and the
source video latents Zs using the following objective:

LFM = Et, z0, ϵ

[
∥vθ(zt, t, Zc, Zs) − (ϵ− z0)∥22

]
.

To allow fast convergence of the geometry-conditioned
pathway and preserve pretrained priors, we use a 3× higher
learning rate for the CUT3R adapter than other components.

4. Experiments

Baselines. We compare our results with three baseline meth-
ods for novel trajectory synthesis from monocular videos:
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Figure 5. Evaluation on the VBench [13, 43] suite of metrics. We
highlight relative differences by normalizing each metric over all
baselines. Our method shows all-around high performance, achiev-
ing the best results for multi-view, subject, and background consis-
tency.

Gen3C [24], TrajectoryCrafter [40], and ReCamMaster [4].
The first two use a re-rendered point cloud as a conditioning
signal, while the last is un-conditioned. For each baseline,
we use the code implementation and pretrained models pro-
vided by the authors. We set camera parameters to ensure all
evaluated methods follow similar trajectories.
Implementation Details. We train our model on 8×H200
GPUs for 15K iterations with a batch size of eight. We used
a learning rate of 6 × 10−5 for the CUT3R adapter, and
2× 10−5 for the other trainable parameters.
Evaluation Dataset. To create a diverse evaluation dataset,
we obtain a hundred dynamic-scene videos from Pexels (a
large stock-footage platform), and fifty static-scene videos
from DL3DV [16]. All videos are resampled to 33 frames
and resized to a resolution of 480×832. For each video,
we evaluate all methods under four different novel camera
trajectories. To ensure a fair comparison, each video is ac-
companied by exactly the same text caption.

4.1. Results
Qualitative results for all baselines and our method are pre-
sented in Figures 6, and 9. Gen3C and TrajectoryCrafter
frequently suffer from unnatural warping due to errors in the
reconstructed point clouds. This is clearly illustrated in Fig-
ure 7 which shows the rendered point cloud condition along



Figure 6. Qualitative evaluation of novel views. We compare frames from new camera trajectories rendered by redirecting the source
video. Both Gen3C [24] and TrajectoryCrafter [40] are conditioned on re-rendered point clouds, and suffer from unnatural warping artifacts.
ReCamMaster [4] is not geometrically conditioned, and hallucinates implausible content in unseen regions (top row: interior of tent; middle
row: cat’s tail; bottom row: haystacks in the background). Compared to the baselines, our results look natural and geometrically consistent.

Cycle Consistency VBench Consistency

Method PSNR↑ LPIPS↓ CLIP↑ Subject↑ Multi-view↑ Background↑
Gen3C [24] 20.62 23.23 97.47 92.07 7.695 90.91
TrajectoryCrafter [40] 14.84 41.59 95.05 93.38 15.57 92.21
ReCamMaster [4] 17.75 32.63 97.03 94.95 5.975 92.76
Ours 20.74 22.47 98.07 95.22 17.11 92.83

Table 1. Quantitative comparison of consistency. We highlight the metrics in blue, proportional to their percentile. The values for LPIPS,
CLIP, and all VBench metrics are ×10−2. Our method shows strong performance on all metrics, achieving the best results on cycle
consistency. Please refer to the qualitative results in Figures 8 and 9, and to the supplementary material for video results.

Pose Reconstruction Error

Method Abs(t) ↓ Rel(t) ↓ Rel(R) ↓
Gen3C 24.45 12.00 0.641
TrajectoryCrafter 16.53 10.52 0.442
ReCamMaster 21.83 12.43 0.518
Ours 14.39 7.798 0.411

Table 2. Target pose reconstruction accuracy. We evaluate the
absolute Abs(·) and relative Rel(·) errors in camera translation
t (in millimeters) and rotation R (in degrees). While we achieve
consistently high rotational and translational accuracy, the uncondi-
tioned ReCamMaster [4] fails to follow the target trajectory closely.
We highlight the metrics in blue, proportional to their percentile.

with the generated output of TrajectoryCrafter. ReCamMas-
ter, on the other hand, lacking any geometric conditioning,
hallucinates implausible content and fails to maintain ob-
ject consistency across occlusions (Figure 8). Our method

k m Cycle PSNR↑ Multi-view↑ Abs(t) ↓ Rel(t) ↓ Rel(R) ↓
1 8 19.24 14.43 16.80 9.620 0.420
2 4 19.50 17.52 16.84 8.374 0.430
4 2 20.74 17.11 14.39 7.798 0.411
8 1 19.15 16.13 16.65 8.917 0.453

Table 3. Ablation on CUT3R Adapter Parameters. The combi-
nation of m and k for all 4 rows corresponds to the same number
of CUTER latent groups to be fed into the DiT, implying the same
amount of DiT computation. k = 4 and m = 2 achieves the best
overall performance. More details are in Fig. 4 and Sec. 4.2.

generates views that look more natural and consistent.

Pose Reconstruction Accuracy. We evaluate the accuracy
of the generated trajectories by running the state-of-the-art
dynamic scene bundle adjustment method of Chenet al. [7]
on the output of each baseline. We then use the Umeyama
algorithm [27] to align the predicted poses with the ground
truth targets, and calculate average absolute and relative
errors over all frames. We present the results in Table 2. Our



Figure 7. Disadvantages of geometric conditioning via re-rendered point clouds. Visualizing the point cloud renders of TrajectoryCrafter
we see that depth scale ambiguity, empirically estimated intrinsics, and holes and misalignment errors in the point cloud can create warped
conditioning images which lead to unnatural outputs. Our results do not suffer from such artifacts.

Figure 8. Qualitative evaluation of geometric consistency across frames. We show the beginning and end frames for two novel video
trajectories from ReCamMaster [4], and our method. Lacking any geometric conditioning, ReCamMaster fails to maintain consistency
across occlusions (Left: a leg of the lamp vanishes. Right: the cardboard box opens after reappearing behind the subject). The latent 4D
condition of our method produces a more stable reconstruction. Please refer to the supplementary material for video results.

method closely follows the target trajectory, with the lowest
translation and rotation errors of all baselines.

Cycle Consistency. To measure the consistency of the gen-
erated videos, we evaluate the symmetry between generated
frames along a cyclical target trajectory. For static scenes, the
generated views should match when the camera revisits the
same pose. Thus, we evaluate all baselines for cycle consis-
tency using 50 random videos from the DL3DV dataset. Our
method outperforms TrajectoryCrafter and ReCamMaster,
and has consistently lower error than Gen3C (Table 1).

Video Quality. We evaluate video generation quality using
the VBench 1 & 2 [13, 43] suite of metrics on dynamic video
inputs (Figure 5 and Table 1). Our method shows all-round
high performance without any large failures, and achieves
the best results on all consistency metrics.

4.2. Ablation Study
Recall in Figure 4 how we reduce the computation of the
DiT self-attention layers by (1) temporally sampling one
CUT3R latent every k frames and (2) grouping the resulting
features into channel-wise concatenation groups of size m,
yielding a smaller number of “CUT3R latent groups” to
concatenate with the video latents along the frame dimension.
To maintain reasonable training speed, we empirically fix the
total number of CUT3R latent groups to 10. In addition, the
VAE-encoded video latents have a fixed channel dimension
of 16, which enforces the constraint mc = 16. Under these
conditions, we perform an ablation study to determine the
best relationship between m and k. Tab. 3 shows that the
optimal configuration is achieved with k = 4 and m = 2.

Limitations Our method currently struggles with dynamic
transparent objects (e.g., a glass cup being lifted by a person),
likely due to CUT3R’s limited ability to estimate reliable



Figure 9. Qualitative evaluation of novel trajectories across frames. Baseline methods conditioned on re-rendered point clouds suffer
from unnatural stretching artifacts, and missing details (Row 1, Col. 4; Row 3, Col. 4). The unconditioned baseline hallucinates a third
arm (Row 2, Col. 4). We avoid these pitfalls by using the latent state of a pre-trained 4D reconstruction model as a soft geometric condition.

geometry for such dynamic transparent materials.

5. Conclusion

We present a method for novel camera trajectory synthesis in
dynamic scenes by conditioning a video diffusion model on
latents from a large 4D reconstruction models (LRM). These
latents provide geometry-aware guidance in a ‘soft’ form,
allowing the pretrained diffusion prior to regularize local
inconsistencies and avoid the errors and rigidity of rendered
point clouds. Experiments on both static and dynamic scenes
demonstrate that our approach achieves stronger geometric
consistency, and higher visual quality than existing geometry-
conditioned and unconditioned baselines methods.
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LaVR: Scene Latent Conditioned Generative Video Trajectory
Re-Rendering using Large 4D Reconstruction Models

Supplementary Material

7. Webpage
Please refer to the webpage in our supplementary materials
for more video results, including comparisons with baselines.

8. Training Dataset
We train the model on the synthetic MultiCamVideo dataset
from ReCamMaster [4] which contains 136K dynamic
scenes created using Unreal Engine 5. For each dynamic
scene, it provides 10 synchronized videos with randomly
generated camera trajectories. We randomly select two tra-
jectories per scene as source and target.

9. Model Size
Both our model and ReCamMaster [4] have approximately
1.3B parameters, while TrajectoryCrafter [41] and Gen3C
have approximately 5B and 7B parameters, respectively. De-
spite our model’s relatively small size, we still achieve the
overall best performance on novel trajectory synthesis.
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